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Dynamics of vortex nucleation by rapid thermal quench
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By numerical and analytical studies of the time-dependent Ginzburg-Landau model we show that vortex
nucleation in superfluidHe by rapid thermal quench in the presence of superflow is dominated by a transverse
instability of the moving normal-superfluid interface. The instability threshold is found analytically as a
function of supercurrent density and the front velocity. The dynamics of vortex evolution at long times after the
guench is investigated.
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[. INTRODUCTION tions that the NS interface becomes unstable with respect to
transverse undulations in the presence of a superflow. These
Formation of topological defects under a rapid quench is aindulations quickly transform into large primary vortex
fundamental problem of contemporary physics promising tdoops which then separate themselves from the interface. Si-
shed a new light on the early stages of the evolution of thénultaneously, a large number of small secondary vortex-
Universe. For homogeneous cooling a fluctuation-dominate@ntivortex nuclei are created in the supercooled region by
formation mechanism has been suggested by Kibble anfiuctuations, resembling the conventional KZ mechanism.
Zurek (KZ).1® Normally, cooling is associated with an in- The primary vortex loops screen out the superflow in the
homogeneous temperature distribution accompanied by i@ner region causing the annihilation of the secondary
phase separating interface which moves through the systewrtex—amivortex nuclei. The number of tearvivedsecond-
as temperature decreases. A generalization of the KZ sc@y vortex loops is thus much smaller then that anticipated
nario was suggested in Ref. 4 for inhomogeneous phase traffom the KZ conjecture. The dynamics of the vortex-loop
sitions in superfluids: if the thermal front moves faster thanevolution at very long times after the quench is studied nu-
the normal-superfluid interface a large supercooled regiomerically. We find that the number of vortex loops in the
which is left behind becomes unstable towards fluctuationbulk of the supercooled region decays with time dsatiich
induced nuclei. complies with the complete screening of superflow.
Superfluid ®He offers a unique “testing ground” for The structure of the paper is as follows. In Sec. Il we
rapid phase transitiorrsn recent experiments with a rotating formulate the TDGL model foPHe. Section IIl describes the
superfluid®He, vortex formation was revealed during a rapid results of three-plus-one and two-plus-one-dimensional nu-
second-order phase transition triggered by absorption omnerical simulations of the generalized TDGL model. In Sec.
neutrong’” The sample was locally heated well above thelV we present analytical studies of the NS interface instabil-
critical temperature due to the energy produced by each ality. An estimate for the number of vortex loops created as a
sorption event. The heated region then cooled down rapidlyesult of the NS interface instability is presented in Sec. V.
below the superfluid transition. Such an inhomogeneous$ection VI treats the long-term dynamics of vortices in the
cooling is associated with propagation of normal-superfluidransient state. The results of weakly nonlinear analysis of
(NS) interface and with formation of a large supercooledthe interface instability are presented in Appendix B.
normal region behind the interfat&. The fluctuation-
dominated mechanism may thus be responsible for creation Il. MODEL
of initial vortex loops in the supercooled region. It is com-
monly accepted that these initial vortex loops are further in- In our calculations we use the simplest time-dependent
flated by the superflow and give rise to a macroscopic numdescription, namely the TDGL model with a scalar order
ber of large vortex lines filling the bulk superfluid. parameter). There are two major assumptions behind this
In this paper we report a different mechanism of the vor-model. First, we expect that a complex scalar order param-
tex formation which overtakes the growth of the initial eter is sufficient to describe vortex dynamics and vortex
fluctuation-dominated loops. Preliminary account of somenucleation in3He-B at least not too close to thfe—B tran-
results had been published in Ref. 9. Studying the entirsition line3* Approximation of the®He-B order parameter
process of the vortex formation in the presence of a superstructure by a complex scalar ignores the actual rich structure
flow using the time-dependent Ginzburg-Land@DGL) of the nine-component complex order parameter specific for
dynamics, we account for the temperature evolution assumsuperfluid®He. Of course, we are thus unable to differentiate
ing a thermal diffusion. The TDGL scheme is modified to between various types of vortices that can exist in superfluid
allow for a complex relaxation rate which models the vortex®He and to follow all kinds of transitions between them.
dynamics at temperatures considerably below However, we believe that this model gives a correct qualita-
We find analytically and confirm by numerical simula- tive account for vortex dynamics. Certainly, this consider-
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ation cannot describe properly the exact quantitative valueghere o
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is the normalized diffusion constanto

of the vortex mutual-friction parameters which depend on=[48/7;(3)][D ro/£2]~1/£&,, where ro=mh/8T,. Here D
3He-specific structure of the vortex cores. The other assumpis the usual diffusion constant, whileis the quasiparticle
tion concerns the nature of the TDGL model itself. Thismean free path. IrfHe, o is very large because>¢,. E,

model seems to be a reasonable descriptior’fbe-B very

determines the initial temperature of the hot bubble and is

close toT . Itis expected to be exact in the so-called gaplesproportional to the deposited enerdy such that
regime when the order-parameter magnitude is smaller than

the quasiparticle relaxation ratéor *He, the corresponding

Eo=E[ C(Te—T.) E(To)(ma) ¥ 74,

temperature range is, unfortunately, beyond the reach Qfnerec is the heat capacity. Since the deposited energy is

present experimentsMoving away fromT,, kinetics of ex-

large compared to the characteristic superfluid energy, we

citations becomes important, so that a description that eMyssumeE,> 1. Representative values &, in our calcula-
ploys the order parameter as the only relevant variablg,s are of the order of 30~50. An important parameter is a

breaks down. For a vortex dynamics, in particular, a differen
feature becomes important: a nondissipative force on a MOVt b
ing vortex appears perpendicular to the vortex velocity in
addition to a dissipative viscous force. The dissipative force

is, in principle, taken care of by a simple TDGL mod®ITo

ime ta=E3" at which the temperature in the center of the
ubble drops down td...
The Langevin force with the correlator

(LrOL(r 1)) =2T¢s(r—r")s(t—t")

account for a nondissipative dynamics we allow for a com- . . .
plex relaxation rate of the order parameter in the TDGLdescribes thermal fluctuations with a strengththat corre-

equation. An imaginary part of the relaxation constant issponds to the heat bath temperatiige(see the review Ref.
known to result in a transverse force on vortices inl5 for detai). The effective noise strength in reduced units is

superconductors:1? We write our starting equations in the
form

(1—in)dp=Ag+[1—F(r,t)J—||2p+L(r,t). (D)

This equation interpolates between two extremes: clo3e to
the parameter;— 0, which corresponds to the usual TDGL

Ti=[27/7¢(3) w*Y2Gi Y 1—(T/T,) ] 2

where Gi= v(O)gch~ 10* is the Ginzburg numbem(0) is
normal density of states. This value ®f results from the
microscopic expression for the Ginzburg-Landau free energy
of a Fermi superfluid with a scalar order parameégse, for
example, Ref. 16 We neglect dependence Bf on the local

model, while largen corresponds to low temperatures. Thetemperature in what follows.
latter case resembles the dissipationless Gross-Pitaevskii

equation devised originally for a weakly interacting Bose gas
at T=0 and then applied also for superfluid helium Il at low

temperature$>**

Ill. RESULTS OF SIMULATIONS
We solved Eq.(1) by the implicit Crank-Nicholson

Here f describes local temperature evolution. Since themethod. The integration domain was equal to *1G6its of

energy released due to relaxation of the order paranyeter
very small in Fermi superfluids, especially ndar, because

only a small fraction of particles participate in paired con-

Eq. (1) with 200° mesh points. The computations were per-
formed on massive parallel computer at Argonne National
Laboratory. The boundary conditions were takendggdz

densate, we can consider evolution of temperature indeper= ik with a constantk at the top and the bottom of the

dent on the order-parameter dynamics.
In Eq. (1), A is the three-dimensiondBD) Laplace op-

integration domain. This implies a uniform superflowy
=K|y|? along thez axis far away from the temperature

erator, and distances and time are measured in units of theubble, and the equilibrium value of the order parameiger

coherence lengtl§(T..) and the characteristic time; (T..),
respectively. These quantities are taken at temperadtufar

is related tok as follows: | |?=1—k>.
Consider first simulations for fully dissipative case with

from the heated bubble. For a Fermi liquid, the microscopic,=0. Selected results are shown in Fig. 1. The “explosion”

values of the Ginzburg-Landau parameters are

Tol(Tw)=7hI8(T.—T..),
the coherence length is
7§(3) 1/2
12(1-T/T.)

_ flUF
’ fo_szC'

&M= fo(

Close toT . the local temperature is controlled by normal-
state heat diffusion and evolves as

_ T-T. Egexp(—r?/ot)
f(r,t)= ToT. " 2 ,

)

(heat pulsgwas created at=0 at the origin located at the
center of each panel in Fig. 1. One sees from Figa—-c)

that without fluctuationgnumerical noise onhf) the vortex
loops nucleate upon the passage of the thermal front. Not all
of the loops survive: small loops collapse and only big ones
grow. This type of behavior is characteristic for the vortex
motion in a dissipative environment described by the TDGL
equation withy=0:'* a single vortex ring in the presence of
uniform superflow either shrink or expand depending on the
circulation. Forn# 0 the vortex ring also drifts parallel su-
perflow direction'® Although the vortex lines are centered
around the point of the quench, they exhibit a certain degree
of entanglement. After a long transient period, most of the
vortex loops reconnect and form the almost axisymmetric
configuration.
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FIG. 1. 3D isosurface ofi|=0.4 for o=400, E,=30, andk
=0.5.(a)—(c) T;=0. Images are taken at times 36,48,80.(d)—(f)
T¢+=0.002,t=24,48,80.

We find that the fluctuations have a strong effect at early FIG. 2
stages: vortices nucleate not only at the normal-superflui .

interface(we call them “prlm.ary” vort|ce$,”but a_lso in the —1: gray (¢|~0.8) indicates suppression of order parameter by
b!'”k of the supercooled regioffsecondary” vortices, see_ current. Current is along theaxis. Vortices are seen as black dots.
Flgg. ](d) and (e). However, later on, small vortgx loops i (@—(c) T,=0, images are shown far=40,100,200;(d)(f) T

the interior collapse and only larger primary vortices survive— g 002, fort=30,50,200.

and expandFig. 1(f)].

To elucidate the details of nucleation we considered a ) . . . o
quasi-three-dimensional axisymmetric version of Eq.de- sec_ondary vortlces_elther annihilate with antivortices due to
pending on onlyr andz coordinates, j[helr'mutual attraction or collapse due to the absence of the
inflating superflow.

Numerical solution of Eq(1) with nonzeron= 0.5 shows
close similarity with previous results; see Fig. 3. However, in
contrast to the case@=0, for a nonzeron the shape of the
The domain was 5G0with 100 mesh points. We have resulting vortex configuration is asymmetric in the direction
found that without thermal fluctuations vortices nucleate abf applied current. This is due to oblique motion of the vor-
the front of the NS interfacblack/gray border in Fig.(2)]  tices with respect to the current direction: Fg# 0 the vor-
analogous to the previous nonaxisymmetric case. Note thaex loop not only changes its size but also drifts in the direc-
black areas on Figs.(@, (d), and also Fig. @& correspond tion of superflow(see Ref. 18 for detail Similar behavior
already to supercooled normal regionB<{T.). The initial  occurs forp>1. Our simulations performed faj=5 dem-
instability is seen as a corrugation of the interface. The in-onstrate that the superflow is expelled from the region sur-
terface propagates towards the center, leaving the vorticesunded by primary vortex loops: the order parameter is de-
behind. As thermal fluctuations are turned on, the vortexpressed considerably by the flow pattern around the region of
loops also nucleate in the bulk of the supercooled regiorthe primary vortices. Thus the presence of the transverse
[black spot in Fig. &d)] resulting in the creation of the sec- force on vortices resulting from an imaginary part of the
ondary vortex-antivortex pairs. We have found that primaryrelaxation constant does not change qualitatively the mecha-
vortices prevent the supercurrent from penetrating into the@ism of vortex formation and evolution during a rapid ther-
region filled with the secondary vortices. One sees that thenal quench.
primary vortices encircle the brighter spots in Figi)2(c), We now summarize the main results of the numerical
(e), and(f) indicating a larger value of the order parameter3D+1 simulations. (i) Without fluctuations, vortices are
and thus a smaller value of the supercurrent. As a result theucleated at the interface between the superfluid and normal

Images of 4| for axisymmetric Eq.(1) for o=5000,
%0:50, andk=0.5, black corresponds {@/|=0 and white to| |

A=+ (1r)a,+ 2. ©)
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FIG. 3. Images ofy| obtained by numerical solution of axisym-
metric Eq. (1) for =0.5. Other parameters arB,=50, o
=5000, k=0.5, T;=0.002. Images are shown for tinte=30 (a),
t=40 (b), t=150(c), andt=300 (d).

phases(primary vortex loops These vortices survive the
collapse of the interface and remain in the superfluid phas
after the cooling process is completéii) Fluctuations pro-
duce vortex loops also inside the supercooled bulbde-

PHYSICAL REVIEW B63 184501

is the local temperature gradient ane (cm-Q)*l is the tem-
perature front velocity defined through the quench @é
=—[gflat];—,. We have for the front velocityv
=—dry(t,)/dt,=(30t,—2r2)/4rt.. The front starts to
move towards the center &t-t, =t,,./€ and disappears at
t=t,ax When the temperature drops belol. The front
velocity accelerates as the hot bubble collapses. Since its
radiusr . is large compared to the coherence length, the tem-
perature front can be considered flat. We choose the coordi-
natesy,z parallel to the front. In a two-dimensional problem
the solution is assumed independentyof

We transform to the frame moving with the velocity
and perform the scaling of variables

X=vX,z=vz,t=tv*, (4)

Tﬂ=¢/v,u=v3/a. (5)

We drop tildes in what follows. If the radius of the hot
bubbleR large comparing with coherence lenghtwhich is

the case for large deposited energies, one can neglect the
curvature of the hot bubble. Therefofe~ 2+ 2, and Eq.

(1) takes the form

X
(L=imdp=Ag+(L=indap— So—1d*p. (§)

e

The parameten~ (02/t5,)/IN*(tma/t) is the only parameter

of the problem(in addition to#); it characterizes the quench

ondary vortice§ however, these vortices disappear on laterrate. For thermal diffusion ifHe, the parameteu is large
stages of the proceséii) The supercurrent inside the region due to a large magnitude af. We discuss the physical
surrounded by primary vortex loops is considerably smalleimeaning ofu in more detail in Sec. IV A.

than outside this region which is seen as brighter interior

regions in Figs. 1-3(iv) Primary vortex loops expand and A. Steadily moving interface

move very slowly away from the place where they have been
formed. Indeed, as seen from Figs. 1-3, vortices move OnIY6)
slightly during the time span of a decade from 30 to 300
units. We discuss these results in more detail in the following W=F(x)exp(ikz) @)
sections of the paper.

Consider first a dissipative system with=0. Equation
admits a family of stationary current-carrying solution

with amplitudeF satisfying the equation

IV. INSTABILITY OF THE NORMAL-SUPERFLUID , X
INTERFACE IyF+ oy F— G+k

Our numerical simulations shown in Figs. 1-3 indicate\), ¢o1ved Eq(8) numerically, using matching-shooting al-

that _nucleation of vo_rtices happens_predominantly within agorithm with Newton iterations from NAG library. The so-
relatively narrow region at the NS interface. The fact thatlutions to Eq.(8) for various values ofi are shown in Fig. 4.

vortices are nucleated there even without fluctuations SU9As one sees from the figure, the supercooled normal region
gests that the interface becomes unstable. In this section '

With T<T, expands with increase af A largeu limit for
perform the stability analysis and demonstrate that the inter% c &P g

f indeed devel instability © ds the f i fhe stationary solution was studied in Ref. 8.
ace indeed develops an Instability towards the formation of - 5,6 ¢an obtain an approximate solution to E).for u

vortices.
: -
Following Refs. 3, 8, and 9, we expand the local tempera- + -t US PU!

ture 1—f nearT.. Let us putx=r.—r wherer. is the radius
of the surface at whichT=T, or f(r¢,t)=1, i.e., r2
=(3/2)otcln(tm_axltc). A positivex is directed towards the hot wherey is to be determined later. For not very Iarge)ne
region. We write I-f(r,t)~ —a[x—v(t—tc)], where can negleck/u in Eq. (8) to get the equation

F—F3=0. €S)

X=X—Uy—Uuk?, 9)

a=—[f1r];_,=2r /ot S+ aF g+ yFo— F3=0 (10

184501-4
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where p=2/3z%2 and z=u?3Q2%-x/u) while Q

=/y—1/4. Expandingp for x/u<1 one obtains from Eq.
11

_ ] 2 T 1\
F~exp(—x/2)sm(§u93+z—ﬂx . (13
On the other hand, Eq10) gives for smallF,
Fo=C exp —Xx/2)sin( QX+ ¢), (14)
whereC and ¢ are constants. The functidfy, of course, is

independent ofi, and the constanf cannot be large. Match-
ing of Egs. (13) and (14) thus requiresQ)—0 where y

X =1/4+0O(u~?3).
The same consideration applies also for a complex relax-

FIG. 4. The steady NS interfadevs x for different values ofu. ation constant;#0. We now put in Eq(6)

The termal fronfT=T, is atx=0 and is moving to the right.

Yy=F(x)explikz+iwt+ikx), (15)
for an approximate interface solutioRy. The interface
Fo(x) connects the two equilibriE =+ \/y andF=0; see Where » and « are the frequency and longitudinal wave
Fig. 5. The functiorF, approximates the exact solutiénto ~ number which will be defined later. One sees that an inter-

esting feature for any;# 0 is the emition of oblique waves

Ea. (8 fairly W.e” for not very largex. Fgr Igrge negat|ve. from NS interface. Substituting Ed15) into Eq. (6) one
X<U, the solution should be replaced by its final asymptotics,iains

F=+y—x/u. For large positivex, the solution of Eq(10)
should be matched with the true asymptoticsFer 0 found
from Eq.(8). It is given by the expression

iw(l—in)F—(1—in)(dF+ikF)

F—F3. (16

X
=a§F+2i;«7XF—(G+k2+ K?
F~exp(—x/2)Ai[u?3(y—1/4—x/u)]. (12)

Fixing
As it was shown in Ref. 8, fon— o the matching is possible

for y—1/4. Indeed, for large, one has for the Airy function K== K= /2 7
one derives Eq(8) with the k? replaced byk?®+ 2, which
can be excluded by a proper shift xf

The coordinate transformation E(®) determines the po-
sition of the interface as a function of the quench parameter
u. With an increase in, the interface shifts to negative
leaving a supercooled normal region with< T, behind as
seen in Fig. 4. The size of the supercooled regiondiis
~u/v in the GL units. The growth of fluctuations is de-
scribed by linearized Eq1):

Ai(—2)~z Ysin(p+ 7/4), (12

——————

04 |

0.015 T T

The fluctuation grows exponentially with a characteristic
Zurek time 7,~ 7(13’2. According to Eq.(1), the coherence
length decreases with decreasing temperature and reaches the
characteristic Zurek length g~ 7(1?’4 at this time. Topologi-

cal defects can be created by fluctuations if the size of the
supercooled regiodr is considerably larger tha&,. The

L estimate givessr/&;~ulvrg*~u* Therefore fluctuation
can produce vortices during such a phase transition only if
the condition of a rapid quenal>1 is satisfied. We shall

see now that the same condition determines an instability of
Short-dashed line showB3exp(). Inset: the ratio of integrals the interface in presence of a supercurrent towards formation
J”.Fde*dx/ [~ F2e*dx as a function ofy, to be used in Appendix of vortices. Thus at a rapid transition witie>1 two pro-

A cesses take place simultaneously: formation of vortices at the

0.010 |
02 |
0.005 |-

0.000 f . . .
0.25 0.26 0.27 0.28 0.29

Y

0.0 .
-20 -10

FIG. 5. Solution to Eq(10) for y=0.275(solid line). For com-
parison is show solution for E¢8) for u= 1728 (long dashed ling
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b

interface between the superfluid and normal supercooled re-
gion and creation of vortices by fluctuations inside the nor-

mal region.

B. Linear analysis

Let us examine the transverse stability of stationary solu
tion to Eqg. (6). For =0 we put ¢=[F+w(x,z1)]
X exp(kz), wherew is a perturbation. For the functiom we
derive from Eq.(6)

X
W= 92W+ 92W+ 2iK 9, W+ W — Thi kz)w

—F22w+w*)—F(2|w|2+w?) — |w|?w. (18)

Separating real and imaginary partsvof=a+ib one has

da=d2a+ g2a—2ka,b+ d,a— a—3F%a

X
—+k?
u

—F(3a2—b?) —(a?+b?a, (19

db=adb+ 9’b+2kd,a+ d,.b— Xk b—F2b—2Fab
t X z Z X U

—(a’+b?)b. (20

Dropping nonlinear terms ia,b and representing the solu-
tion to Egs.(19) and(20) in the form

a

b
whereq is the transverse undulations wave number rrid
the growth rate, we obtainy=kag, A =\+q?)

A
iB exp\(g)t+iqz), (21)

AA+2xB=2A+ d,A— (x/u+k?)A—3F?A,

AB+2yA=92B+4,B—(x/lu+k?>)B—F?B. (22

In the case of a complex relaxation constant perturbative

solution to Eq.(6) is sought in the formy= (F+w)exp(kz
+iwt+ikX). Substituting this ansatz into E(6) one obtains
Eq. (22) where k? is replaced withk®+ «?, and y=Kkq
—iNnl2. Therefore all the results on linear stability can be
easily carried over to the case of arbitrayy

Solution to Egs(22) can be obtained numerically for ar-
bitrary u and y. Moreover, one can find analytical solutions
in two limits: long-wavelength limity<1 and large-velocity
limit u>1.

C. Long-wavelength limit

The eigenvalue\ for y—0 can be found as an expansion
in x: A:XA1+X2A§+--- and similarly for A and B.
Within the zeroth order iry, the second Eq22) coincides
with the equation for the stationary solution E§). One has
Ap=0,By=F. Within the first order, we deriv8,=0 and

2A1+ 0 AL — (XIu+K?)A;—3F2A=2F. (23

FIG. 6. Images of | obtained by numerical solution of E¢6)
for u=100, k=0.1, size of the integration domain 24@40, num-
ber of grid points 408400, images are shown fdr=90 (a), t
=125 (b).

The solutionA;=2ud,F is obtained by differentiating Eq.
(8). The second-order terms in E@®2) give

92By+ 0yBy— (XIU+ K2+ F?)By,=4udF+ A F. (24)

A zero mode of Eq.(24) is F. Equation(24) is not self-
adjoint, therefore the adjoint zero moBé does not coincide
with F. The corresponding adjoint operator has the form

92BT—9,BT— (x/u+k?+F?)BT=0. (25)

One checks by substitution that functiBi=F exp{) satis-
fies EQ.(25). Equation(24) has a solution if the orthogonal-
ity condition with respect to the zero mode is fulfilled

[’

J  dXFE(AUdF + A,F)=0.

After integration we obtaim\,=2u. Returning to the origi-
nal notations, we obtain thexactresult

(26)

A=0%(2uk®*—1)+0(q%). (27)
For »#0 we obtain an implicit condition for the instabil-
ity growth rate:

A=2u(kq—i\7/2)?>—q>. (29)

It is easy to check that the threshold is given by the condition
2k?u=1 irrespectively of. The growthratex near the
threshold X?u—1—0 is[compare with Eq(27)]

2_
5 2uk-—1

1-i2u7kq’ 29

A=(

The instability occurs above the threshédg=(2u) ~* or
k2~ a?¥uM3~ o7 HN(tmaxdt)

in the Ginzburg—Landau units. The threshold is much
smaller than the bulk critical valug.=1/y/3 for a rapid
quenchu>1; it can be exceeded for a very small superflow.

To visualize the outcome of instability and to demonstrate
that it indeed leads to formation of vortices we performed
numerical simulations using Ed6). The results are pre-
sented in Fig. 6. They clearly show that the instability results
in nucleation of vortices at the interface.

184501-6
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D. Large-u limit

The instability threshold obtained above does not provide

the optimal wave numbaeg,,,, for the most unstable pertur-

bation. This wave number can be found by evaluating

higher-order terms in(q) up tog*, which will provide the
fall off of the growth rate. A full analytical solution of the set
of Egs. (22) can be obtained in the limit of a large (fast
quench rate Let us start first withn=0 and consider the
largeu limit in more detail. In this limit one assumes

~ x~ 1/u. Let us put agaix=x—uy—uk? in Egs.(22). For
u>1 we treat the terms containinly, y, andx/u as pertur-
bations. The steady-state solution of E§) should also be
written within the same accuracy. Therefore, we use the a
proximate solutionF, of Eq. (10) as discussed above. In
general, the interface has a forfy(Xx—Xy) wherexg is an
arbitrary constant determining the position of the interface
The positionx, is fixed by the corresponding solvability con-
dition, see below.

PHYSICAL REVIEW B63 184501

oo

ilzf_ FaeXdx, ip,= f_ (F{)2erdx,
i3:f FoFéeXdX:_illz,
i4=J (x—Xg)F3e*dx,

5= f:(x—xo)(Fé)zede. (34)

Pt should be noted that fox— the asymptotic tail of the

functionF is incorrect. However, as already mentioned, the
crossover to this asymptotic behavior occurs whens al-
ready very small; see Fig. 5.

The constank, is determined from the requirement that
Egs.(30) always have an eigenvalue=0 for y=0 as was

Having established the properties of the steady-state solygso the case for the original Eq&2). It implies thati,

tion to Eq.(10), we turn to the stability analysis of the set of
Egs. (22). In the largeu limit these equations assume the
form

AA+2xB+ exA= 92A+ 9, A+ yA—3F3A,

AB+2yA+ exB=92B+d,B+yB—F3B.  (30)

We omit the bar ovek for brevity.

For e=0 Egs. (30) have zero modes:A;B)=(0,Fy(x
—Xg)), Similar to Egs(22). In addition, Eq{(30) has an extra
zero mode A,B) = (Fy(x—Xo),0) that manifests the transla-
tion invariance fore=0 (we putFy=dFy/dx). For anye

#0 the translation invariance is broken by the perturbation

~x/uA, x/uB in the left-hand side of Eq$30). The corre-
sponding solvability condition will specify the value gr§.

In contrast to the case gqf— 0 considered in the previous !

section, the solvability conditions must be fulfilled simulta-
neously for both zero modes of ER0). Thus representing
the general zero-mode solution of E§0) at the zeroth order
in the form

A
B

agF o(X—Xo)
boFo(X—Xo)

whereag,by are arbitrary constants, and performing the in-

: (31

=0 and fixes the value of,,

xoziglf (F§)%e*dx. (35)

Evaluation of the integrals in Eqé34) for y— 1/4 yields

(36)

(see Appendix A for detaijs Substitution of Eq.(36) into
Eq. (32) results in

A=+ 1%+ 4)%—1/u. (37

Returning to the original definitions, we have an explicit ex-
pression for the largest eigenvalue of the transverse instabil-

ity,

A= 1%+ 4k°g%>— 1lu—q?2. (39

For u—c one has from Eq(38) A =2|kg|—q?. The maxi-
mum growthrate is achieved @, =k and is simplyk?.
Numerical solution of Eqs(22) demonstrates an excellent
agreement with the theoretical expression B8); see Fig.
7.

tegrations with the corresponding zero modes, one obtains N case of a nonzerg, Eq.(37) gives foru>1,

characteristic equation fok:

01

A2+Ec A—4c 2+E— (32
The: 2X ¥

where the coefficients; ,,d are given in the forms of inte-
grals of F with the corresponding zero modes in the interval

— < X< "

2
T I3
01:G(|5/|2+|4/|1), Co=r5s d
1l2

i4is

. (33

u?iqi,

where

M1-in)=2lkd —g%

Again, the real part of the growth rate has a maximum at
Omax=K. Stability analysis thus confirms the conclusion
drawn in Sec. Il from the numerical results that the NS
interface becomes unstable irrespectively of the imaginary
part of the relaxation constant. In our model this is equiva-
lent to the conclusion that the instability is not limited to a
vicinity of the critical temperature but exists for any tem-
peratures.

Very close to the threshold of the instability, there is a
possibility that the solution remains finite due to nonlinear
terms in Eqs(19) and(20). Nonlinearity may create a finite
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FIG. 7. A vs xy foru=512 andu= 1728, solid lines show results
of numerical solution of Eq(22), dashed lines represent analytical
solution Eq.(37).

FIG. 8. Number of vorticedl ™ (filled symbols and antivortices
N~ (open symbols vs time for 0=5000E,=50, and k=0.5.
Circles correspond td@;=0 and squares td;=0.002. Inset:N

) ) o =N*"—N~ for T;=0 (solid line) and T;=0.002 (dashed ling
barrier that a perturbation has to overcome to initiate the
instability. Nonlinear stability analysis described in Appen- o \WKB approximation. However, in the largelimit this

dix B shows that the dynamics of the system close 10 thgime dependence is canceled out trivially and one obtains
instability threshold is governed by the so-called Kuramoto-agam Eq.(39).

Sivashinsky equatioflKSE) known in the theory of pattern
. . 20 .

formation and interface growth mOdéf%a Itis known that  ryides initial perturbations for the interface instability

KSE exhibits a variety of stable periodicas well as spa- g using saddle-point approximation for the integral in Eq.

tiotemporal chaotic solutions. For our case, this would imply(39) for t>1. one derives{|w|>~\/T—fRe expiket+ikz]. The
persistent spatiotemporal dynamics at the interfagbout number of V(,)rtices is estimated &k=r ok, wherer is the

nucleation of vorticesHowever, moving away from the in- i\ of the front where the perturbatiofjs|) become of
stability threshold overrides nonlinear terms and results Nhe order of unity. The time intervat, corresponding to
blowing up solutions, see, e.g., Ref. 22. We did not succee w)=1 isto~k*2In(Tf’1). Vortices ha\(/)e no time to grow if

yet to observe KSE-type dynamics in our simulations with L . 2 -
Eq. (6) because it requires very large system sizes and ver _)tm‘?x' In.thls. limit one findsr g~ o (tmax—to). The number
f vortices is given by

large times of integration due to the critical slowdown at the
threshold of instability. As long as the experimental situation

in 3He is concerned, the instability threshold is exceeded N~Kro~ ok ytnato. (40
rapidly as the moving interface accelerates during the coofaking into account that in our original notatién-v /v,
down. It would be interesting to verify KSE scenario in &whereu, andu, are the imposed and critical GL superflow
specially designed experiment, e.g., with liquid crystals. velocity, respectively, anth,— E23 \we arrive at

Taking into account that it is the thermal noise which

V. NUMBER OF CREATED VORTEX LOOPS N~ oEY3\(vslve)?— BAn(T; HIED, (41)

Now we apply the above results to estimate the number ofvhere 8= const. Equation(41) exhibits a slow logarithmic

vortex loops nucleated due to the interface instability. This isdlependence of the number of vortices at the interface on the
determined by the wave number of the most unstable modeevel| of fluctuations.

In the case of thermal quench, the velocity of the NS inter-
face u— as time approaches,,,, therefore the limit of
large u applies. The growth of perturbations near the inter-
face is described by the Fourier integral

VI. DYNAMICS OF VORTEX-ANTIVORTEX
ANNIHILATION

In this section we concentrate on the evolution of vortices
. created by both the instability and fluctuations. We will ar-
W”f dgSa)exdA(q)t+iqz], (39 gue that the outcome of the interface instability determines
the distribution of supercurrent around and inside the vortex.
wherew(x,z,t) is the perturbation to the interface solution, This distribution, in turn, determines the dynamics of pri-
S(q) is the spectrum of initial perturbation. In the context of mary vortex loops and the collapse of the secondary vortices.
original problem described by Edl) the velocity of the Figure 8 shows the number of vortichs and antivorti-
interface and therefore parametek are certain functions of cesN~ vs time with and without fluctuations. Fluctuations
time, see Eqs(4). Therefore instead of expressiaifq)t in initially create a very large number 10* of vortices and
Eq. (39) one has to use an integrfiy\ (q(t'))dt’, valid in  antivortices in the bulk which then annihilate. The resulting
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FIG. 10. Number of vorticedl vs time fork=0 (zero supercur-

FIG. 9. (a) Number of survived vortex ringhl as function ofk  reny. Parameters of simulation&,=50,0=10000, domain size
for Eq=50 ando=5000 and(b) N vs o for k=0.4 andE;=50.  1000x 1000 for quasi-three-dimensional samgliee 3D), andE,
Dashed lines show fitting to prediction Eel). =50,0=6000, domain size 800800 for the two-dimensional

sample. Each line is averaged over five independent realization of
amount of surviving vorticetN=N*—N~ is only weakly thermal noise.
dependent on fluctuations.

Shown in Fig. 9 is the number of vortex loops vs  (Vinen's equatiof). AssumingN™ =N~ one readily obtains
guench parameters and applied currkntAt small k the N*~1/t. This behavior is in disagreement with Refs. 26 and
numberN shows threshold behavior while becoming almost27 which claim that a long-range interaction between the
linear for largerk values. The deviations from a linear law vortices results in substantial deviation from the mean-field
appear close to the critical vaIUQ=1/\/§ for the flow in- theory. A 1f relaxation is well-established in experiments
stability in a homogeneous system, when vortices start t&vhere the decay of vorticity was measuitédfter an abrupt
nucleate spontaneously everywhere in the bulk. stop of the rotating container with superfluitte.

The estimate Eq(41) is in agreement with the results of  If the flow is applied k#0), one has in generall™
simulations?® see Fig. 9. For the experimental values of the# N™. From the mean-field theory one immediately obtains
parameters, our analysis results in about ten surviving vortian exponential relaxatiohl* ~exp(—at)+B, whereB is a
ces per heating event. It is consistent with Ref. 6 where afinal number of vortices and is a relaxation ratex~N"
many as 6—20 vortices per neutron were detected. —N". However, this results is in clear disagreement with the

Our simulations identify two distinct regimes of annihila- numerical simulations shown in Fig. 11. As it follows from
tion of vortices and antivortices vs time; see Fig. 8. First, athe figure, the relaxation law is the same as in the previous
large number of vortices is created at early stages of theasek=0, the only difference being that* approaches an
quench (<50 in Fig. 8. Then, this number decreases rap-equilibrium value N*=A/t+B.
idly down to much smaller values. At a later stage-60), it

relaxes slowly towards the equilibrium value. We performed 100 T T
detailed numerical simulations in order to elaborate the sta- 3D
tistics of the vortex annihilation at the later stages of the 8or 1
guench. The results are shown in Figs. 10 and 11. The simu- é 60 k N .
lations are performed for the quasi-three-dimensional geom- Vv
etry (assuming axial symmetry of the vortex-loop configura- 40 :
tion) and also for a pure two-dimensional geomestraight 00 . .
vortex lines. " "

Let us discuss first the results of simulations for zero ap- 80 2D
plied currentjs. As one sees from Fig. 10, the behavior for A e <N>=A/t+B
both 2D and 3D situations is similar: a fast initial relaxation 60 1
and then a slow decay consistent with the dependéhce a0k
~1f (in agreement with Ref. 24 for the homogeneous
guench. This result complies with the mean-field theory of 20

annihilation based on the assumption that the annihilation 0 200 ¢ 400 600
rate of vortices is proportional to the local density of anti-
vortices: FIG. 11. Number of vorticeN vs time k=0.4 for the three-
dimensional sample arld=0.3 for the two-dimensional one. Other
parameters the same as in Fig. 10. The limiting number of vortices
dN*/dt~—N*N~ is B~33.5 in 3D andB~21.6 in 2D.
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Figure 11 gives a very strong evidence in favor of thedefinite conclusion from this discussion is that more studies,
conclusion that the supercurrent is expelled from the vortesboth theoretical and experimental, are needed to clarify the
region to the periphery, being screened out by vortices germature of vortex formation at rapid second-order phase tran-
erated by the NS interface instability as seen from Figs. Zitions.
and 3. The absence of supercurrent inside the vortex region
recovers the mean—fi_eld behav!Nr*~1/t for the bulk vor- VIl. CONCLUSION
tices. Such an effective screening of the supercurrent can be
understood in the following way. The number of created vor- We have found that the rapid normal-superfluid transition
tex loops is determined by the wave numbgg, that corre-  in the presence of superflow is dominated by a transverse
sponds to the maximum growth rate. Singg,, =k the num-  instability of the NS interface propagating from the bulk into
ber of vortices is such that it exactly compensates the phagbee normal region. This instability produces primary vortex
difference produced by the supercurrent along the interfacdoops which then separate from the interface. Simulta-
As a result, no net current remains inside the region surneously, a large number of vortex-antivortex pairs are cre-
rounded by primary vortex loops. ated by fluctuations in the bulk of the supercooled region

Equation(41) N~kr, can also be written as;~N«k/r,  formed after the collapse of the interface. Our numerical re-
which is the condition that a flolk=muv ¢ supports an array sults indicates that the dynamics of vortex-antivortex annihi-
of N vortex loops with a radiug, and a circulationk lation in the bulk obeys a simple power ldW~ 1/t irrespec-
=a/m. Therefore the vortices created at the interface ardively of the dimensionality of the space. Our numerical
almost in equilibrium under the action of the superflow andsimulations show that the primary vortex loops screen out
of the linear tension. Their evolution is thus very slgas the superflow and cause annihilation of the vortex-antivortex
can be seen also from Figs. 1=-3s a result, the loops pairs in the bulk. The number of surviving vortices is deter-
created by fluctuations inside the supercooled bubble hav@ined by superflow-dependent optimum wave vector of the
enough time to shrink away and disappear before the primaripterface instability.
loops grow and go far from the bubble, reducing the screen- We were able to derive analytically exact expressions for
ing of superflow. This explains why thetXecay of vorticity ~ the instability threshold and for the growth rate of transverse
persists for as long as 1000 time units in our simulations. perturbations in the limit of fast quench. We verified that this

Both the analytical estimates E@1) and the numerical scenario remains valid also far away from the critical tem-
results shown in Fig. @) together with the long-term vortic- perature where the dynamics of vortex nucleation is de-
ity relaxation depicted in Fig. 11 strongly suggest that thescribed by a modified TDGL model with a complex relax-
overall number of nucleated vortices is determined primarilyation rate. We show that in the very vicinity of the threshold
by the interface instability and is a linear function of the the dynamics of transverse undulations is described by the
applied superflow, at least for superfluid velocities far fromKuramoto-Sivashinsky equation. Though our results are in-
the bulk instability limit. This is the exact result of the tended for interpretation of experimehtsith SHe, they can
TDGL model under the condition that cooling is accom- also be useful for nonlinear optical systérmnd may stimu-
plished by thermal diffusion. In the experimériowever, a late new experiments, e.g., in liquid crystals.
dependence close Mocvg’ has been observed. The origin of
the disagreement between the theoretical predictions and the ACKNOWLEDGMENTS
experimental observations can be searched for both in the
quality of the TDGL-model description and in the possible ~We are grateful to V. Eltsov, M. Krusius, G. Volovik, L.
complications in interpreting the experimental results. FromKramer, L. Pismen, V. Steinberg, and W. Zurek for stimu-
the theoretical side, the assumption of thermal diffusion fofating discussions. This research is supported by US DOE,
the mechanism of removal of the neutron-deposited energy igrant W-31-109-ENG-38 and by Russian Foundation for Ba-
most vulnerable. In reality, formation of vortices could startSic Research, grant 99-02-16043.
before the excitations produced by the neutron absorption
thermglize; th'e temperature thus would no longer 'bel a good APPENDIX A: EVALUATION OF CONSTANTS
quantity at this stage of the vortex dynamics. Variations of IN EQ. (32)
pressure in course of the absorption of a neutron can also be
an important factor initiating the phase transition. From the To find the constants, , defined by Eq(33) we need to
experimental side, one can think of effects of the containeexpress all integrals in Eqé34) in terms ofi;. This is pos-
walls on the vortex nucleation. Indeed, the neutron absorpsible to achieve in the limit ofy— 1/4. In this case the main
tion happens close to the wall so that the boundary of the hatontribution to the integral§34) comes from the region
bubble can approach the wall and initiate the vortex formawhere the functionF, is already small, and we can drop
tion at nucleation sites at the wall. One more factor can be anonlinearity in Eq.(10) in order to evaluate the functidfy.
effect of the bulk superflow instability. Indeed, Fig(a® For the constant, one has from Eq(34)
shows an upturn of the number of nucleated vortices as the
superflow approaches the instability linkit=1/\/3. Super- Co=i1/(4i,). (A1)
flow velocities in the experimehare not far from the critical
value; this proximity can superimpose on the linear depenThe integrali, can be transformed by partial integration to
dence and modify the behavior of the created vorticity. Athe form
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and (20) using the ansatzB1). The solvability conditions

(A2)  give rise to the following equations:

= (1
ip= fx(i(Fg)”—FoFg)exdx.

: : drag=d2ag+ 4kdpy—2ay/u—diai+d,b;, (B2
Using Eq.(10) we substituteFj=—Fj— yFo+F3, and 907 7290 2007 280 /U™ (180T 2 (B2)
performing partial integration in EqA2), we derive b= agbo—k 9,80~ daagho. (B3)
=i + Jx Féexdx. (A3) The constant, , ; are given by the integrals
3 ©
However, the last integral in E§A3) is very small compar- d1=i—J FO(F6)3ede,
ing toi, for y—1/4; see inset to Fig. 5. It follows from the 277
fact that functionF3e* has a maximum where the function 1 (=
Fg |§ glready very small; see Fig. 5. In’deeci, the maximum of dzzi_f F3FLerdx, (B4)
Foe* is determined by the conditioRy/Fy=—1/2, which 2~

implies thatF,~e*?. Consequently, Eq(10) providesF,
~eP* p=-1/2=i\Jy—1/4 near the equilibriumF,=0.

Thus one sees that whenr- 1/4 the maximum condition for

FgeX is fulfilled at Fy—0. Therefore fory—1/4 we can
neglect the last integral in EA3), leading toi,= yi;. Sub-
stituting it into Eq.(Al) givesc,=1.

To calculate the constamt; we use that,=0 and ex-
cludex, from i with the help of Eq(35). We have

T P O
01=|5/|2:—.f x(Fg)ee*dx— .—j xFge*dx.
yll —® |]_ —

(A4)
Integrating by parts we find
” 1\ 2 AX =1 2\n "
,mX(FO) e*dx= » E(FO) —FoFg | xe*dx
o0 1 5
:j 5 Fo(x+2)e*dx
+f (yF&+FyFo)xetdx
=7y f xF3e*dx+i,/2. (A5)

Substituting Eq(A5) into Eq. (A4) one obtaing;=2.

APPENDIX B: WEAKLY NONLINEAR ANALYSIS

In this section we consider effect of nonlinearity on the , 2g(1) 4 ..
interface instability. The analysis is convenient to perform in
the limit of u>1. We generalize the stability analysis by

including the lowest order quadratic nonlinearity in EG9)
and (20). For this purpose we modify the ansdt&l) by

allowing the constantag,bg to be slowly varying functions

of time and transverse coordinate

A ap(z,t)FH(X—Xg)
B

bo(Z,t)Fo(X—Xp) )

(B1)

We replacex — d; andiq— 4, in Egs.(30) and add the cor-

2 (= 3
dgzif mFOFOeXdX'
Here we use Eqg34).
In general, we do not expect that E¢B2) and(B3) have
finite steady-state solutions in general case, because numeri-
cal simulations with Eq(6) indicates that vortices tear off of
the interface. The tearing off the vortices corresponds to a
finite-time blow up of the solution of Eq$B2) and (B3).
However, there is a possibility that the solution remains
finite very close to the threshold of the instability. In this
case Egs(B2) and(B3) can be reduced to a single equation.
In order to see that we perform the following transformation
of variables:

t=u't, z=pz, (B5)

A=ag/u’, B=bg/us. (B6)

whereu?=2uk?—1 is the supercriticality parameter charac-
terizing the distance from the instability threshold. This par-
ticular scaling of the parameters will be clear later. After the
transformation Eqs(B2) and (B3) assume the form

piaA= pPFEA+4kaB— 2AIU—dy A%+ u?B2,

(B7)
2B =B —kaA— u’d3AB. (B8)
We expand A=A+ ,2A0+... and B=BO

-. In the lowest order in EqB7) one obtains

A©®=2yks,BO). (B9)

In the next order one obtains
u o, ud,
A(l): 2u kO'GB(l)'i‘ E&EA(O)—F T(B(O))z

ud
= 2ukd;BM+ukZBO)+ TZ(B(O))Z. (B10)

responding quadratic nonlinearity. Following the lines of Thus combining Eq¥B9) and(B10) one obtains the follow-

Sec. IV D, we employ the solvability conditions in E¢$9)

ing relation betweer\ andB:
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o 2 3. Y2 oo 4 2 2\ (=
A=2ukd;B+ u®| u*kd;B+ TB +0(u”). s=2d,+d,= i—+i— FoFoedx
2 1 —x
(B11) ;
Now, substitutingA from Eq. (B11) into Eq. (B8) we obtain =T %Féede?&O- (B13)

after simple algebra
Equation(B12) is the celebrated Kuramoto-Sivashinsky
diB= —éfB— kzuzagB— uksB7;B, (B12) equation(KSE) known in the theory of pattern formation and
interface growth modef$:?° In our situation KSE is valid
where s=(2d;+d,). This expansion is valid ifu?=2uk?®  only very close to the threshold of the instability. Simple
—1—0, otherwise the reduction to a single equation is im-comparison of omitted largest higher order nonlinear term
possible. The coefficiend can be simplified by integration ~d;u?uk3g;(5;B)? with the term~sukB;B in Eq. (B12)

by parts: gives the estimatg?<1/(u?k?)~ 1/u.
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